Every day of our lives we experience changes
that occur either gradually or suddenly. We often characterize
these changes as quantitative or qualitative,
respectively. For example, consider the following
simple experiment (Figure 1).
Imagine a board supported at both ends,
with a load on top. If the load
is small enough, the
board will take a bent shape with a deformation depending on the
magnitude of
and on the board's material properties (such as
stiffness, K).
This state of the board will remain stable in the sense that a
small variation in the load
(or in the stiffness
K) leads to a
state that is only slightly perturbed. Such a variation (described by
Hooke's law) would be referred to as a quantitative change. The board
is deformed within its elastic regime and will return to its original
shape when the perturbation in
is removed.
The situation changes abruptly when the load is increased beyond a certain critical level at which the board breaks (Figure 2b). This sudden action is an example of a qualitative change; it will also take place when the material properties are changed beyond a certain limit (see Figure 2a). Suppose the shape of the board is modeled by some function (solution of an equation). Loosely speaking, we may say that there is a solution for load values and that this solution ceases to exist for . The load and stiffness K are examples of parameters. The outcome of any experiment, any event, and any construction is controlled by parameters. The practical problem is to control the state of a system--that is, to find parameters such that the state fulfills our requirements. This role of parameters is occasionally emphasized by terms such as control parameter, or design parameter. Varying a parameter can result in a transition from a quantitative change to a qualitative change. The following pairs of verbs may serve as illustrations:
The above-mentioned problems are much too limited to cover phenomena that we will later want to denote with the term bifurcation. The extended range of phenomena we have in mind is indicated by the pair
Let us mention a few examples. The electric membrane
potential of nerves is stationary as long as the stimulating current
remains below a critical threshold; if this critical value is passed,
the membrane potential begins to oscillate, resulting in nerve
impulses. The motion of a semitrailer is straight for moderate speeds
(assuming the rig is steered straight); if the speed exceeds a
certain critical value, the vehicle tends to sway. Or
take the fluttering of a flag, which will occur only if the
moving air passes fast enough. Similarly, the vibration of tubes
depends on the speed of the internal fluid flow and on the
speed of an outer flow. This type of oscillation also occurs when
obstacles, such as bridges and other high structures, are exposed to
strong winds. Many other examples--too
complex to be listed here--occur in combustion, fluid dynamics,
and geophysics.
Reference will be made to these later in the text.
The transition from a stationary state to motion, and vice versa, is also a qualitative change. Here, speaking again in terms of solutions--of governing equations--we have a different quality of solution on either ``side" of a critical parameter. Let the parameter in question again be denoted by , with critical value . Thinking, for instance, in terms of wind speed, the state (e.g., of a flag or bridge) is stationary for and oscillatory for . Qualitative changes may come in several steps, as indicated by the sequence
Some important features that may change at bifurcations have already been mentioned. The following list summarizes various kinds of qualitative changes:
The quality of solutions or states is also distinguished by their geometrical shape--that is, by their pattern. For example, the four patterns in Figure 3 characterize four possibilities of how the velocity of a specific combustion front varies with time (redrawn after [1]). The solution profile of Figure 3a is ``flat" or stationary; this pattern stands for a uniformly propagating reaction front. Figure 3b shows a wavy pattern, representing a regularly pulsating velocity of the combustion front. The pattern of Figure 3c is again wavy but less regular, and the pattern of Figure 3d appears to be irregular (chaotic). The four different patterns of Figure 3 arise for different values of a parameter ; new patterns form when the parameter passes critical values. This example illustrates why such bifurcation phenomena are also called pattern formation.
A Discussion of branching phenomena requires the language of mathematics. Tutorial 2 will review some important mathematical tools and concepts.
References
[1] Bayliss, A., Matkowsky, B.J.: Two routes to chaos in condensed phase
combustion. SIAM J. Appl. Math. 50 (1990) 437-459
[2] Busch, W.: Max und Moritz. (1865) Facsimile W. Busch Gesellschaft,
Hannover 1962
[3] Seydel, R.: Practical Bifurcation and Stability Analysis. From Equilibrium to Chaos. Second Edition. Springer Interdisciplinary Applied Mathematics 1994